# **Extra Practice Problems 2**

Here are some extra practice problems on topics that were popular on the Google Moderator site. We'll release solutions to these problems on Monday.

### **Problem One: Binary Relations**

- Let Σ be some alphabet and L be a language over Σ. Two strings x, y ∈ Σ\* are called *indistinguishable* relative to L, denoted x ≡<sub>L</sub> y, iff for every w ∈ Σ\* we have xw ∈ L iff yw ∈ L. This relation arises in a more complete version of the Myhill-Nerode theorem. Prove that ≡<sub>L</sub> is an equivalence relation over Σ\*.
- ii. Prove that a binary relation is a total order iff it is total, antisymmetric, and transitive.
- iii. How many equivalence relations are there over the set  $\{a, b, c\}$ ?

#### Problem Two: Injections, Surjections, and Bijections

- i. Find functions  $f: A \to B$  and  $g: B \to C$  where  $g \circ f$  is a bijection but neither f nor g are bijections.
- ii. An *involution* is a function  $f: A \to A$  where f(f(x)) = x. Prove that all involutions are bijections.

# Problem Three: Regular and Nonregular Languages

- i. Let  $\Sigma = \{ \mathbf{a}, \mathbf{b} \}$  and let  $L = \{ \mathbf{a}^n \mathbf{b}^m \mid n, m \in \mathbb{N} \text{ and } n \neq m \}$ . Prove that L is not regular.
- ii. Let  $\Sigma = \{a, b\}$  and let  $L = \{w \in \Sigma^* \mid w \text{ is a palindrome }\}$ . Prove that L is not regular.
- iii. Let  $\Sigma = \{a\}$  and let  $L = \{w \in \Sigma^* \mid w \text{ is a palindrome }\}$ . Prove that L is regular.

#### **Problem Four: Closure Properties and Nonregular Languages**

The regular languages are closed under intersection; if  $L_1$  and  $L_2$  are regular, then  $L_1 \cap L_2$  is regular as well.

i. Is the converse of this statement true? That is, if  $L_1 \cap L_2$  is regular, then are  $L_1$  and  $L_2$  regular? Prove or disprove this statement.

The fact that regular languages are closed under intersection can be used to prove that various languages are not regular without using the Myhill-Nerode theorem. For example, let  $\Sigma = \{\mathbf{a}, \mathbf{b}\}$  and let  $L = \{w \in \Sigma^* \mid w \text{ has the same number of } \mathbf{a}'\text{s} \text{ and } \mathbf{b}'\text{s} \}$ . This language is similar to the language  $L' = \{\mathbf{a}^n\mathbf{b}^n \mid n \in \mathbb{N}\}$ , which we know isn't regular. Using this fact, it's possible to prove that L can't be regular.

- ii. Find a regular language R such that  $L \cap R = L'$ .
- iii. Using your result from (ii), prove that L is not regular.

#### Problem Five: R, RE, co-RE Languages

- i. Prove that the **R** languages are closed under intersection.
- ii. Prove that the **RE** languages are closed under intersection.
- iii. Prove that the co-RE languages are closed under intersection.

### Problem Six: R, RE, and co-RE Languages II

In lecture, we sketched a proof that if M is a recognizer for L, then the machine M' formed by swapping the accept and reject states of M is a co-recognizer for  $\overline{L}$ . However, the machine M' won't in general be a recognizer for  $\overline{L}$ .

Prove that the machine M' formed by swapping the accept and reject states of M is a recognizer for the language  $\overline{L}$  iff M is a decider.

### **Problem Seven: Mapping Reducibility**

- i. A *nontrivial language* is a language other than  $\emptyset$  and  $\Sigma^*$ . Prove that all nontrivial decidable languages are mapping reducible to one another.
- ii. Find an example of an **RE** language and a co-**RE** language that are mapping reducible to one another.
- iii. Prove that  $L \leq_{M} \Sigma^*$  iff  $L = \Sigma^*$ .